Partitioning Theory and

Smog-Chamber Measurements

Neil M. Donahue,
Carnegie Mellon University
Center for Atmospheric Particle Studies

Summer School on Organic Aerosols 23 June 2008
Götteburg, Sweden

The Center for Atmospheric Particle Studies

Funding: EPA, NSF, DOE(NETL), EPRI

Global Non-methane Carbon Flux Balance

- Methane is another $500 \mathrm{Tg} \mathrm{C} \mathrm{yr}^{-1}$.
- Most of the NMHC does not get to CO_{2} [Goldstein and Galbally et al. ES\&T 2007] (Including methane, CO_{2} formation is about $900 \mathrm{Tg} \mathrm{C} \mathrm{yr}^{-1}$)
- Reduced carbon flux is thus about $2 \mathrm{Gt} \mathrm{C} \mathrm{yr}^{-1} ; 1 \mathrm{Gt} \mathrm{C} \mathrm{yr}^{-1}$ to CO_{2} in the atm
- Compare with $14 \mathrm{GY} \mathrm{yr}^{-1} \mathrm{CO}_{2}$ amplitude $-\sim 10 \%$ of NPP goes into VOC fluxes!

Global Non-methane Carbon Flux Balance

- Majority of carbon is removed by deposition. [Goldstein and Galbally et al. ES\&T 2007]
- What phase??

Aerodyne AMS Surface Observations

Zhang, Jimenez et al., GRL, 2007

- Surface 33-67\% OA:

Organic
Sulfate

Particle Ablation Laser Mass Spec. (PALMS)

Organic
Sulfate

- Most of the troposphere $\sim 50 \%$ OA (1:2 < OA:Sulfate $<2: 1$) [Murphy et al., 2007]

What do Individual Particles Look Like?

- Most particles are an internal mixture dominated by condensation.
- Core is primary (i.e., no core for nucleated particles),
- 'Coating' is a mixture, may be several distinct phases.

Where are the Health Effects?

[Peng et al., 2005]

- Health effect from PM_{10} (also $\mathrm{PM}_{2.5}$) regional and seasonal.
$-\mathrm{SO}_{4}^{=}$peaks in N.E. Summer,
- However, so does OOA1! (OOA: $\mathrm{SO}_{4}^{\overline{=}}$).

Organic Aerosol Flux Balance

- Really large number for OA flux! Consistent with global budgets.
- About $4 x$ more OA than models predict (wide error).
- Note large residual vapor deposition term. Few constraints.

Net Fluxes are not Gross Fluxes!

- What is the gross flux into and out of OA?
- There are several major questions relating to assumed organic vapors.
- Oxidation state, as we will see, is a critical part of this.
- HR-ToF PTRMS!!

Phase Behavior of a Semi-Volatile Compound

- Note that we tend to work on a mass basis in particle world. Instead of vapor pressure, we use saturation mass concentration C*.

Semi-Volatile Mass Fraction

Partitioning of Single Component

$\xi_{\mathrm{i}}=\frac{1}{1+\frac{\mathrm{C}_{\mathrm{i}}^{\mathrm{i}}}{\mathrm{C}_{\mathrm{OA}}}}$
Standard Hinshelwood-type saturation curve.

Partitioning of Single Component (log X Axis)

$\xi_{\mathrm{i}}=\frac{1}{1+\frac{\mathrm{Ci}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{OA}}}}$
Now it looks like a gain curve! 1 decade linear region.

Raoult's Law

$$
C_{\text {eq }}=k_{\text {off }} / k_{\text {on }}
$$

$$
\mathrm{C}_{\mathrm{i}}^{*}=\frac{10^{6}}{\mathrm{RT}} \frac{\mathrm{~W}_{\mathrm{i}} \zeta_{\mathrm{i}}}{\bar{W}} \mathrm{p}_{\mathrm{L}, \mathrm{i}}^{\circ}
$$

Partitioning at Specified $C_{O A}$ in Solution

$\xi_{\mathrm{i}}=\frac{1}{1+\frac{\mathrm{Ci}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{OA}}}}$
Raoult's law; really semi-ideal soln. with const. activity coeff.

The Volatility Basis Set

$C_{i}^{*}=\left\{0.01,0.1,1,10,100,1000,10^{4}, 10^{5}, 10^{6}\right\} \mu \mathrm{gm} \mathrm{m}^{-3}$

The Volatility Basis Set: Nomenclature

$$
C_{i}^{*}=\left\{0.01,0.1,1,10,100,1000,10^{4}, 10^{5}, 10^{6}\right\} \mu \mathrm{g} \mathrm{~m}^{-3}
$$

$C_{i}^{*}=\{0.01,0.1,1\} \mu \mathrm{gm}^{-3}$ Low Volatility Organic Compounds (LVOC). Mostly in aerosol.
$C_{i}^{*}=\{10,100,1000\} \mu \mathrm{gm}{ }^{-3}$ Semi Volatile Organic Compounds (SVOC). Both vapor and aerosol, depends a lot on local conditions.
$C_{i}^{*}=\left\{10^{4}, 10^{5}, 10^{6}\right\} \mu \mathrm{g} \mathrm{m}^{-3}$ Intermediate Volatility Organic Compounds (IVOC). Entirely vapor, but untold numbers and hard to measure.
$C_{i}^{*}>10^{6} \mu \mathrm{~g} \mathrm{~m}^{-3}$ Pretty much anything you can name (the VOCs)

It is not that I don't know the identity of all these xVOCs: I have absolutely no idea what I would do with the information even if I knew it!!

Direct Emissions in the Continental U.S.

- Biogenic emissions (green) dominate.
-They are much more volatile than anthropogenic emissions (blue).
THIS DOES NOT INCLUDE WILDFIRES! (\simeq ANTHROPOGENIC?)
Shrivastava, et al., JGR submitted [2008], Millett [MEGAN biogenic fluxes]

Cumulative Emissions in the Continental U.S.

- Cumulative fluxes in red, xfer function to OC in black, cumulative OC in:
- Black is primary OA (condensed ~ always in atmosphere),
- Blue is 'non-traditional' SOA (less volatile precursors now usually POA),
- Green is traditional SOA.
- Less volatile precursors should have a higher probability of contributing to OC.
- About half of the SOA comes from 'non traditional' precursors.
- This transfer fcn. is an educated guess (like almost everything!).
- What is it for real?

The Essential Issue

- Volatility is everything (well, no), and we have to conserve mass.
- When chemistry happens, products either:
- Move to lower volatility, in which case aerosol mass will go up, or
- Move to higher volatility, in which case aerosol mass will go down.
- Is SOA/OOA a major product of a minor species
or a minor product of a major species?

What Does Chemistry Do?

- SOA chemistry = decreasing volatility.
- CO_{2} formation is thermodynamic imperative, given sufficient time.
- Which phase the reaction occurs in clearly matters.
- We will focus on the gas phase here.

α-pinene + Ozone

- Cyan line is pinonaldehyde? m/z $151+169$.
- Small interference for α-pinene at 137 - we subtract this out \propto pinonaldehyde.
[Presto and Donahue, ES\&T, 2006]

Aerosol Mass Fraction

$$
\xi_{\mathrm{i}}=\frac{1}{1+\frac{\mathrm{C}_{\mathrm{i}}^{*}}{\mathrm{C}_{\mathrm{OA}}}}
$$

[Odum, et al ES\&T, 1996]

α-pinene + Ozone

$\sim 2 x$ SOA under remote atmospheric conditions vs. extrapolation.
[Presto and Donahue, ES\&T, 2006]

α-pinene and the Basis Set

(mass yields α^{\prime})

$$
\alpha_{\mathrm{i}}^{\prime}=\{.004, \quad 0, \quad .05, \quad .09, \quad .12, \quad .18, \ldots\}
$$

α-Pinene + Ozone Mass Balance

- Mass yields $\alpha_{i}^{\prime}=\{.004,0, .05, .09, .12, .17, .29, .29, .20\}$
- Only around 0.055 SOA formation from α-pinene in the LVOC range at low NO_{x}.
- Mass balance for 'nominal product' demands $\xi_{\max }=\sum_{i} \alpha_{i} \simeq 1.2-1.4$.

α-Pinene + Ozone Product Distribution

Products distributed over volatility space (a transformation vector) Note very small yield of 'nucleator', consistent with [Burkholder et al. 2006] Multiply yields by mass of α-pinene consumed to get product masses.
[Donahue et al. in prep]

Basis-set 101: Basis Basics

Oxidize some amt. of precursor, say $25 \mu \mathrm{~g} \mathrm{~m}{ }^{-3}$, and distribute products. Start adding from left and see which bin is roughly saturated. Partition that bin 50:50, others accordingly. Add salt to taste. Adjust accordingly.
[Donahue et al. in prep]

α-Pinene + Ozone Partitioning

Partitioning changes with mass loading: x 18 total loading $=x 100 \mathrm{C}_{\mathrm{OA}}$. Most of the OA compounds at $100 \mu \mathrm{~g} \mathrm{~m}{ }^{-3}$ are not in the particles at 1 .
[Donahue et al. in prep]

α-Pinene + Ozone $\Delta H_{V} 300 \mathrm{~K}$

α-Pinene + Ozone Products 243 K

- Products shift left by 2.5 orders of magnitude with a 60 K temperature shift.
(Preliminary data from Saathoff et al. ~ 1 AMF at $100-200 ~ \mu \mathrm{~g} \mathrm{~m}{ }^{-3}$ and 243 K in AIDA.)

α-Pinene + Ozone Products 350 K (Denuder)

- Products shift right by 2.5 orders of magnitude with a 60 K temperature shift.
- Mass loss depends on mass-transfer kinetics, but it should be substantial.

α-Pinene + Ozone Thermodenuder

- Given time, all α-pinene SOA evaporates at $70^{\circ} \mathrm{C}$.
[An et al., Aerosol Sci., 2007]
α-Pinene + Ozone Denuder Model

α-Pinene + Ozone Denuder Model

α-Pinene + Ozone Denuder Model

α-Pinene + Ozone Denuder Model

α-Pinene + Ozone Denuder Model

α-pinene $+\mathbf{O}_{3}$ Dilution

- Generate high SOA and then flush 90% of chamber air.
- Particles shrink slowly to expected size.

Mixtures of Organic Fractions

- Toluene SOA associates with sulfate seed area.
- New OOA associates with HOA mass on diesel (more about this later).
- This is the difference between 2 separate phases (on one particle) and a mixture.
- The SOA/AS separation remains at 90% RH. They don't mix!

Implications: Vapors

- The mass not seen in the particles is in the gas phase, very low vapor pressure.
- Measuring the partitioning of well-chosen compounds (volatility tracers).

Accurate, precise measurements in both phases is a first-order need.

Generations in Terpene $+\mathrm{O}_{3}$

- Multiply unsaturated terpenes like d-limonene should suffer multiple ozonation.
- Which double bond goes first, and what phase is the second reaction in???

$$
k \simeq 3 \times 10^{-16}
$$

$$
k \simeq 8 \times 10^{-18}
$$

Limonene and the Basis Set (1 ppm O 3)

Limonene + Ozone Mass Balance

Limonaketone + Ozone

But limonoketone is just like α-pinene.

Generations of Limonene Oxidation

What happens with $2^{\text {nd }}$ oxidation on real aerosol??.

Limonene + Ozone (100 ppb ozone)

Low- NO_{x} data on complete oxidation line as limonene oxidized!

Low- NO_{x} limonene Q-AMS Data vs $\mathrm{C}_{\bigcirc A}$

[^0]- More oxidized material favored at low $\mathrm{C}_{O A}$ has lower C^{*} (lower vapor pressure).

Limonene + Ozone 2-D NMR (HSQC)

Excess Limonene

Excess Ozone

- Double bond at 4.8 ppm H and $115 \mathrm{ppm}{ }^{13} \mathrm{C}$ totally gone for excess ozone.
- Persistent down-field 'box' at $3.5-4.5 \mathrm{ppm} \mathrm{H}$ is multi-functional ROOH and ROH.

Limonene + Ozone H-NMR (Quantitative)

- Quantify unsaturation vs something else (we use 3.3-4.7 H-C-O, can use other).

Limonene + Ozone Titration

- Loss of unsaturation is much more gradual than homogeneous prediction.
- Consistent with uptake of O_{3} as we hypothesized.

Limonene SOA as $\alpha \cdot \beta$-pinene (Operator)

- Limonene can be characterized by an 'aging operator'.
- Can we formalize this?

Aerosol Mass Spectrometer Data

- Ambient organic aerosol in AMS resolve into factors (these from Pittsburgh).
(From many thousands of compounds!!!)
- HOA looks like diesel and has little oxygen.
- OOA looks highly oxidized.
[Qi Zhang et al. ACP 2005]
- More factors give OOA1 (O:C~1), OOA2 (O:C~ 0.5), BBOA, ...

AMS OOA

- Cities mixed, more than 50% OA
- Remote sites almost all OOA
[Qi Zhang et al. GRL 2007]

OK, so what is OOA?? ... HOA is convincingly POA, so OOA is SOA?

OA Volatility in the Atmosphere

Current Models:

More 'bad' news...
[Huffmann, Jimenez et al. ES\&T, submitted]

- Ambient (Mexico City) OOA is LESS volatile than HOA!!
- THIS COMPLETELY REVERSES THE CURRENT PARADIGM!!!!

Dilution of Primary Emissions

- Dilution to ambient C_{OA} causes $67-90 \%$ evaporation of primary emissions.

Robinson et al., Science [2007]

Photooxidation of Diesel Emissions

- Oxidized diesel fraction looks a lot like OOA.

Robinson et al., Science [2007]; Sage et al., ACP [2008]

A 2-Dimensional VBS: Add Oxygen:Carbon

Fundamental Oxidation Processes

- Competition between functionalization and fragmentation (branching ratio $=\beta$).
- Given time, fragmentation will win (CO_{2} formation).
- Assume $\beta \propto \mathbf{O}: \mathbf{C}^{\mathrm{n}} ; \quad \mathrm{n}=0.5$.

α-pinene SOA

- α-pinene SOA in chambers heading toward OOA, but it is not there yet.

α-pinene SOA Aging

alpha-Pinene tau=0

α-pinene SOA Aging

α-pinene SOA Aging

α-pinene SOA Aging

α-pinene SOA Aging

alpha-Pinene tau=4

α-pinene SOA Aging

alpha-Pinene tau=8

α-pinene SOA Aging

- 1-4 Generations of aging makes OA that looks a lot like OOA2!

Limonene + Ozone Mass Balance

- Makes much more SOA than α-pinene because $2^{n d}$ double bond is 'aged'

Biomass Burning SOA and Thermo Denuder

- Bottom line: BBPOA evaporation and oxidation makes lots of BBSOA.

Diesel SOA

- Diesel aging DOES look like OOA!
- O:C increases progressively with modest (2x) increase in C_{OA}.

Diesel SOA Aging

Diesel SOA Aging

Diesel SOA Aging

Diesel SOA Aging

- 10? generations of aging makes OA that looks a lot like OOA2!

Toluene SOA Aging

toluene +OH tau=2

Toluene SOA Aging

toluene +OH tau=4

Toluene SOA Aging

- Continuous aging of long-lived toluene holds O:C roughly constant.
- Large changes in C_{OA} because of multi-generational products.
- Once again a lot like OOA2!

Toluene SOA

- 3x increase in UV intensity increases SOA formation.
- General levels consistent with aging model.
- Once again a lot like OOA2!

OOA1 Denuder Model

OOA1 Denuder Model

OOA1 Denuder Model

OOA1 Denuder Model

OOA1 at 450 K

OOA1 Denuder Model

OOA Production Mechanisms

- There are many routes to OOA; all probably matter.
- Aging dominates OA levels in the global atmosphere.

[^0]: | $-m / z=30$ |
 | ---: | :--- |
 | $-m / z=46$ |
 | $m / z=44$ |
 | $m / z=43$ |

