Partitioning Theory and Smog-Chamber Measurements

Neil M. Donahue, Carnegie Mellon University Center for Atmospheric Particle Studies

Summer School on Organic Aerosols 23 June 2008 Götteburg, Sweden

The Center for Atmospheric Particle Studies

Funding: EPA, NSF, DOE(NETL), EPRI

Global Non-methane Carbon Flux Balance

- Methane is another 500 Tg C yr $^{-1}$.
- Most of the NMHC does **not** get to CO_2 [Goldstein and Galbally *et al. ES&T* 2007] (Including methane, CO_2 formation is about 900 Tg C yr⁻¹)
- Reduced carbon flux is thus about 2 Gt C yr⁻¹; 1 Gt C yr⁻¹ to CO₂ in the atm
- Compare with 14 GY yr⁻¹ CO₂ amplitude $\sim 10\%$ of NPP goes into VOC fluxes!

Global Non-methane Carbon Flux Balance

- Majority of carbon is removed by deposition. [Goldstein and Galbally et al. ES&T 2007]
- What phase??

Aerodyne AMS Surface Observations

Particle Ablation Laser Mass Spec. (PALMS)

• Most of the troposphere \sim 50% OA (1:2 < OA:Sulfate < 2:1) [Murphy *et al.*, 2007]

What do Individual Particles Look Like?

- Most particles are an internal mixture dominated by condensation.
 - Core is primary (i.e., no core for nucleated particles),
 - 'Coating' is a mixture, may be several distinct phases.

Where are the Health Effects?

- Health effect from PM_{10} (also $PM_{2.5}$) regional and seasonal.
 - $-SO_4^{=}$ peaks in N.E. Summer,
 - However, so does OOA1! (OOA:SO $_4^{=}$).

Organic Aerosol Flux Balance

- Really large number for OA flux! *Consistent* with global budgets.
- About 4x more OA than models predict (wide error).
 - Note large residual vapor deposition term. Few constraints.

Net Fluxes are not Gross Fluxes!

- What is the gross flux into and out of OA?
- There are several **major** questions relating to **assumed** organic vapors.
 - Oxidation state, as we will see, is a critical part of this.

• HR-ToF PTRMS!!

Phase Behavior of a Semi-Volatile Compound

Note that we tend to work on a mass basis in particle world.
 Instead of vapor pressure, we use saturation mass concentration C*.

Semi-Volatile Mass Fraction

Partitioning of Single Component

Standard Hinshelwood-type saturation curve.

 $\xi_i =$

Partitioning of Single Component (log X Axis)

Now it looks like a gain curve! 1 decade linear region.

 $\xi_i =$

Raoult's Law

Partitioning at Specified C_{OA} in Solution

 $\xi_i =$

Raoult's law; really semi-ideal soln. with const. activity coeff.

The Volatility Basis Set

 $C_{i}^{*} = \left\{0.01, 0.1, 1, 10, 100, 1000, 10^{4}, 10^{5}, 10^{6}\right\} \ \mu \text{g m}^{-3}$

The Volatility Basis Set: Nomenclature

 $C_{i}^{*} = \left\{0.01, 0.1, 1, 10, 100, 1000, 10^{4}, 10^{5}, 10^{6}\right\} \ \mu g \ m^{-3}$

 $C_i^* = \{ 0.01, 0.1, 1 \} \ \mu g \ m^{-3} \ \text{Low Volatility Organic Compounds (LVOC).} \\ \text{Mostly in aerosol.}$

 $C_i^* = \{10, 100, 1000\} \ \mu g m^{-3}$ Semi Volatile Organic Compounds (SVOC). Both vapor and aerosol, depends a lot on local conditions.

 $C_i^* = \{10^4, 10^5, 10^6\} \mu g m^{-3}$ Intermediate Volatility Organic Compounds (IVOC). Entirely vapor, but untold numbers and hard to measure.

 $C_i^* > 10^6 \,\mu g \,m^{-3}$ Pretty much anything you can name (the **VOCs**)

It is not that I don't know the identity of all these xVOCs: I have absolutely no idea what I would do with the information even if I knew it!!

Direct Emissions in the Continental U.S.

• Biogenic emissions (green) dominate.

-They are much more volatile than anthropogenic emissions (blue). THIS DOES NOT INCLUDE WILDFIRES! (\simeq ANTHROPOGENIC?)

Shrivastava, et al., JGR submitted [2008], Millett [MEGAN biogenic fluxes]

Cumulative Emissions in the Continental U.S.

- Cumulative fluxes in red, xfer function to OC in black, cumulative OC in:
 - **Black** is primary OA (condensed \sim always in atmosphere),
 - Blue is 'non-traditional' SOA (less volatile precursors now usually POA),
 Green is traditional SOA.
- Less volatile precursors should have a higher probability of contributing to OC.
- About half of the SOA comes from 'non traditional' precursors.
- This transfer fcn. is an educated guess (like almost everything!).
 - What is it for real?

The Essential Issue

Volatility

- Volatility is everything (well, no), and we have to conserve mass.
- When chemistry happens, products either:
 - Move to lower volatility, in which case aerosol mass will go up, or
 - Move to higher volatility, in which case aerosol mass will go down.
- Is SOA/OOA a major product of a minor species or a minor product of a major species?

What Does Chemistry Do?

• SOA chemistry = decreasing volatility.

- CO₂ formation is thermodynamic imperative, *given sufficient time*.
- Which phase the reaction occurs in clearly matters.
 - We will focus on the gas phase here.

α -pinene + Ozone

• Cyan line is pinonaldehyde? m/z 151 + 169.

• Small interference for α -pinene at 137 – we subtract this out \propto pinonaldehyde. [Presto and Donahue, *ES&T*, 2006]

Aerosol Mass Fraction

[Odum, et al ES&T, 1996]

α -pinene + Ozone

 \sim 2x SOA under remote atmospheric conditions vs. extrapolation. [Presto and Donahue, *ES&T*, 2006]

 α -pinene and the Basis Set

(mass yields α')

 $\alpha'_{i} = \{.004, 0, .05, .09, .12, .18, ...\}$

α -Pinene + Ozone Mass Balance

• Mass yields $\alpha'_i = \{.004, 0, .05, .09, .12, .17, .29, .29, .20\}$

- Only around 0.055 SOA formation from α -pinene in the LVOC range at low NO_x.
- Mass balance for 'nominal product' demands $\xi_{max} = \sum_i \alpha_i \simeq 1.2 1.4$.

α -Pinene + Ozone Product Distribution

Products distributed over volatility space (a transformation vector) Note very small yield of 'nucleator', consistent with [Burkholder *et al.* 2006] Multiply yields by mass of α -pinene consumed to get product masses.

[Donahue et al. in prep]

Basis-set 101: Basis Basics

Oxidize some amt. of precursor, say $25 \,\mu \text{g m}^{-3}$, and distribute products. Start adding from left and see which bin is roughly saturated. Partition that bin 50:50, others accordingly. Add salt to taste. Adjust accordingly.

[Donahue et al. in prep]

α -Pinene + Ozone Partitioning

Partitioning changes with mass loading: x18 total loading = x100 C_{OA}. Most of the OA compounds at 100 μ g m⁻³ are not in the particles at 1.

[Donahue et al. in prep]

 α -Pinene + Ozone ΔH_V 300 K

α -Pinene + Ozone Products 243 K

• Products shift left by 2.5 orders of magnitude with a 60 K temperature shift. (Preliminary data from Saathoff *et al.* ~1 AMF at 100-200 μ g m⁻³ and 243 K in AIDA.)

 α -Pinene + Ozone Products 350 K (Denuder)

• Products shift right by 2.5 orders of magnitude with a 60 K temperature shift.

• Mass loss depends on mass-transfer kinetics, but it should be substantial.

α -Pinene + Ozone Thermodenuder

• Given time, all α -pinene SOA evaporates at 70 °C.

[An et al., Aerosol Sci., 2007]

α -Pinene + Ozone Denuder Model

α -Pinene + Ozone Denuder Model

α -Pinene + Ozone Denuder Model

α -Pinene + Ozone Denuder Model

38

α -Pinene + Ozone Denuder Model

α -pinene + O₃ Dilution

- Generate high SOA and then flush 90% of chamber air.
- Particles shrink *slowly* to expected size.

[Grieshop et al., GRL 2007]

Mixtures of Organic Fractions

- Toluene SOA associates with sulfate seed area.
- New OOA associates with HOA mass on diesel (more about this later).
- This is the difference between 2 separate phases (on one particle) and a mixture.
 - The SOA/AS separation remains at 90% RH. They don't mix!

Implications: Vapors

• The mass not seen in the particles is in the gas phase, very low vapor pressure.

• Measuring the partitioning of well-chosen compounds (volatility tracers).

Accurate, precise measurements in both phases is a first-order need.

Generations in Terpene + O₃

- Multiply unsaturated terpenes like d-limonene should suffer multiple ozonation.
- Which double bond goes first, and what phase is the second reaction in???

$$k \simeq 3 \times 10^{-16}$$

Limonene and the Basis Set (1 ppm O₃)

 $\alpha'_{i} = \{.0, ..., .06, ..., .22, ..., .34, ..., .43, ..., .20, ..., .14, ...\}$

Limonene + Ozone Mass Balance

D-limonene + O_3 makes more SOA than α -pinene.

Limonaketone + Ozone

But limonoketone is just like α -pinene.

Generations of Limonene Oxidation

What happens with 2nd oxidation on real aerosol??.

Limonene + Ozone (100 ppb ozone)

Low-NO $_x$ data on complete oxidation line as limonene oxidized!

Low-NO $_x$ limonene Q-AMS Data vs C_{OA}

· More oxidized material favored at low C_{OA} has lower C^{*} (lower vapor pressure).

Limonene + Ozone 2-D NMR (HSQC)

- Double bond at 4.8 ppm H and 115 ppm 13 C totally gone for excess ozone.
- Persistent down-field 'box' at 3.5-4.5 ppm H is multi-functional ROOH and ROH.

Limonene + Ozone H-NMR (Quantitative)

• Quantify unsaturation vs something else (we use 3.3-4.7 H-C-O, can use other).

Limonene + Ozone Titration

- Loss of unsaturation is much more gradual than homogeneous prediction.
- Consistent with uptake of O₃ as we hypothesized.

Limonene SOA as $\alpha \cdot \beta$ -pinene (Operator)

- Limonene can be characterized by an 'aging operator'.
- Can we formalize this?

Aerosol Mass Spectrometer Data

- Ambient organic aerosol in AMS resolve into factors (these from Pittsburgh). (From many thousands of compounds!!!)
 - HOA looks like diesel and has little oxygen.
 - OOA looks highly oxidized.
 - More factors give OOA1 (O:C \sim 1), OOA2 (O:C \sim 0.5), BBOA, ...

[Qi Zhang et al. ACP 2005]

AMS OOA

- Cities mixed, more than 50% OA
- Remote sites almost all OOA

[Qi Zhang et al. GRL 2007]

OK, so what *is* OOA?? ... HOA is convincingly POA, so OOA is SOA?

OA Volatility in the Atmosphere

Current Models:

More 'bad' news...

[Huffmann, Jimenez et al. ES&T, submitted]

- Ambient (Mexico City) OOA is **LESS** volatile than HOA!!
- THIS COMPLETELY REVERSES THE CURRENT PARADIGM!!!!

Dilution of Primary Emissions

 \bullet Dilution to ambient C_OA causes 67-90% evaporation of primary emissions.

Robinson et al., Science [2007]

Photooxidation of Diesel Emissions

• Oxidized diesel fraction looks a lot like OOA.

Robinson et al., Science [2007]; Sage et al., ACP [2008]

A 2-Dimensional VBS: Add Oxygen:Carbon

Fundamental Oxidation Processes

• Competition between functionalization and fragmentation (branching ratio = β).

- Given time, fragmentation will win (CO₂ formation).
- Assume $\beta \propto 0$:Cⁿ; n = 0.5.

α -pinene SOA

• α -pinene SOA in chambers heading *toward* OOA, but it is not there yet.

• 1-4 Generations of aging makes OA that looks a lot like OOA2!

Limonene + Ozone Mass Balance

• Makes much more SOA than α -pinene because 2nd double bond is 'aged'

Biomass Burning SOA and Thermo Denuder

Bottom line: BBPOA evaporation and oxidation makes lots of BBSOA.

Diesel SOA

- Diesel aging DOES look like OOA!
- O:C increases progressively with modest (2x) increase in C_{OA} .

Diesel SOA Aging

Diesel SOA Aging

Diesel SOA Aging

Diesel SOA Aging

• 10? generations of aging makes OA that looks a lot like OOA2!

Toluene SOA Aging

Toluene SOA Aging

Toluene SOA Aging

- Continuous aging of long-lived toluene holds O:C roughly constant.
- Large changes in C_{OA} because of multi-generational products.
- Once again a lot like OOA2!

Toluene SOA

- 3x increase in UV intensity increases SOA formation.
- General levels consistent with aging model.
- Once again a lot like OOA2!

81

OOA Production Mechanisms

- There are many routes to OOA; all probably matter.
- Aging dominates OA levels in the global atmosphere.