

Table 2. Effect cyclic precurs	t of OH scaven ors. A compar			
Reference	Org. Precursor	Scavenger	SOA Effect]
This study	limonene α -pinene Δ^3 -carene	cyclohexane, 2-butanol, without	SOA _{WO} >SOA _{2-B} >SOA _{CH} SOA _{WO} >SOA _{2-B} >SOA _{CH} SOA _{WO} >SOA _{2-B} >SOA _{CH}	1
Keywood et al. 2004 (18)	cyclohexene	cyclohexane, 2-butanol, CO	SOA _{CO} >SOA _{2-B} >SOA _{CH}	
Iinuma et al. 2005 (19)	α-pinene	cyclohexane, 2-butanol	SOA _{2-B} >SOA _{CH}	1
Docherty and Ziemann, 2003 (30)	β-pinene	cyclohexane 1-propanol	SOA _{CH} >SOA _{1-P}	
Docherty et al. 2005 (17)	α -pinene β -pinene Δ^3 -carene sabinene	cyclohexane, 1-propanol, formaldehyde	$\begin{array}{l} SOA_{1.P} \geq SOA_{CH} \geq SOA_{HCHO} \\ SOA_{CH} \geq SOA_{1.P} \geq SOA_{HCHO} \\ SOA_{1.P} \geq SOA_{CH} \\ SOA_{CH} \geq SOA_{CH} \end{array}$	

org. precursor (ppb) ^b	type of study	OH scavenger	temp (K)	RH (%)	<i>M</i> _{tot} ^c	N tot ^c	source
L (1000) L (19.5 ± 1.2) L (15 & 30)	static reactor flow reactor flow reactor	cyclohexane n.s 2-butanol	$\begin{array}{c} 295 \pm 2 \\ 295 \pm 2 \\ 298 \pm 0.4 \end{array}$	0.01 & 31 15, 30 & 43 < 2-85	no effect no effect +	no effect +	Bonn et al. (<i>9</i>) Fick et al. (<i>18</i>) this study
C (1000) C (18.5 ± 1.2) C (15 & 30)	static reactor flow reactor flow reactor	cyclohexane n.s 2-butanol	$\begin{array}{c} 295 \pm 2 \\ 295 \pm 2 \\ 298 \pm 0.4 \end{array}$	0.01 & 31 15, 30 & 43 < 2-85	no effect no effect +	no effect +	Bonn et al. (<i>9</i>) Fick et al. (<i>18</i>) this study
AP (1000) AP (50) AP (41-124 reacted) AP (49-713) AP (20.1 ± 1.3) AP (56000 - 266000) AP (15 & 30)	static reactor static reactor static reactor flow reactor flow reactor flow reactor flow reactor	cyclohexane cyclohexane 2-butanol cyclohexane n.s n.s 2-butanol	$\begin{array}{c} 295 \pm 2 \\ 295 \pm 2 \\ 301 - 303 \\ 295 \pm 0.5 \\ 295 \pm 2 \\ 293 - 302 \\ 298 \pm 0.4 \end{array}$	0.01 & 31 0.01 & 31 < 2-58 0.2 & 40 15, 30 & 43 13-41 < 2-85	no effect + n.s no effect +	no effect – n.s – (small) no effect no effect +	Bonn et al. (9) Bonn et al. (9) Cocker et al. (11) Berndt et al. (10) Fick et al. (18) Rohr et al. (17) this study
^a n.s = Not stated. L =) means an increase w	Limonene. C = Δ^3 - ith relative humidit	Carene. AP = α-p y and a negative s	inene. ^b Conce sign (–) means	ntrations are giv s a decrease wit	en as start cor n relative hum	centrations in idity.	ppb. ° A positive sig

