

		2000	2020 CL
ortality - long-term exposure	Life years lost	3,619	2,467
ortality - long-term exposure	Premature deaths	348	272
fant mortality	Cases	0.68	0.35
Chronic bronchitis	Cases	164	128
espiratory hospital admissions	Cases	62	42
Cardiac hospital admissions	Cases	38	26
Restricted activity	Days	347,700	222,000
Respiratory medication use, children	Days	4,200	2,000
Respiratory medication use, adults	Days	27,700	20,900
ower respiratory symptoms (LRS), children	Days	192,800	88,900
.RS. adults with chronic disease	Davs	285 300	207 600

Table 1: Characteristic aerosol data for urban, rural, and high alpine air in central Europe. ^[3]					
	Urban (Munich)	Rural (Hohenpeissenberg)	Alpine (Zugspitze)		
PM2.5 [µgm ⁻³]	20±10	10±5	4±2		
TC in PM2.5 [%] FC in TC [%]	40 ± 20 50 ± 20	30 ± 10 30 ± 10	20 ± 10 30 ± 10		
OC in TC [%]	40 ± 20	70±10	70 ± 10		
WSOC in TC [%]	20 ± 10	40±20	60 ± 20		
MWSOC in WSOC [%]	$30\!\pm\!10$	50 ± 20	40 ± 20		
[a] Rounded arithmetic from about 30 filter sa 2003.	mean valu mples colle	es \pm standard deviation ected at each location of	determined during 2001–		

Description Global Source, Tg a ⁻¹ U.S. Contribution $Primary Sources$ p_0 Tg a ⁻¹ $Primary Sources$ $40 (21-91)^{cd}$ 3.4^c $13 (0.7-3.1)$ Biofuel use $10.4 (5.0-21)^{cd}$ 4.3^c $0.4 (0.2-0.9)$ Fossil fuel use $3.8 (1.9-11)^{c,d}$ 10.4^c $0.4 (0.2-0.9)$ Secondary Formation Io.2 (10.2-19.1)^{c,h} 6.3^a $0.6 (0.6-1.2)$ Other biogenic VOCs $15 (5-25)^h$ 5.0^a $0.8 (0.6-1.2)$ Urban VOCs $8.0 (4.0-12)$ 25.9^i $2.1 (1.0-3.1)$ Total $94 (49-185)$ $6.0 (4.7-17)$ ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^c Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^c Claeys et al. [2004]. ^a Guenther et al. [195]. ^b Kanakidou et al. [2005]. ^b KABARA et al. 2 (2005]. ^b Kanakidou et al. [2005]. ^c Claeys et al. [2005].	Global Atmosphere ar	nd the U.S. Contributio	c Matte	r (OM) in the		
Description Otobal sources 7_{0} $1g$ a Primary Sources 40 (21-91) ^{c.d} 3.4^{c} 1.3 (0.7-3.1) Biofuel use 10.4 ($5.0-21$) ^{c.d} 4.3^{c} 0.4 ($0.2-0.9$) Fossil fuel use 3.8 ($1.9-11$) ^{c.d} 10.4^{c} 0.4 ($0.2-0.9$) Fossil fuel use 3.8 ($1.9-11$) ^{c.d} 10.4^{c} 0.4 ($0.2-0.9$) Fossil fuel use 3.8 ($1.9-11$) ^{c.d} 10.4^{c} 0.4 ($0.2-1.2$) Secondary Formation Isoprene 6.2 ($2-6.2$) ^{c.f.} 4.8^{g} 0.3 ($0.1-0.3$) Terpenes 10.2 ($10.2-19.1$) ^{c.h.} 6.0^{g} 0.6 ($0.6-1.2$) Other biogenic VOCs 15 ($5-25$) ^h 5.0^{g} 0.8 ($0.3-1.3$) Urban VOCs 8.0 ($4.0-12$) 25.9^{i} 2.1 ($1.0-3.1$) Total 94 ($49-185$) 6.0 ($4.7-17$) ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savana and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^d Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^c Claeys et al.	Description	Global Source To a ⁻¹	U.S.	U.S. Contribution		
Open biomass burning ^b 40 (21-91) ^{c.d} 3.4 ^c 1.3 (0.7-3.1) Biofuel use 10.4 (5.0-21) ^{c.d} 4.3 ^c 0.4 (0.2-0.9) Fossil fuel use 3.8 (1.9-11) ^{c.d} 10.4 ^c 0.4 (0.2-0.9) Fossil fuel use 3.8 (1.9-11) ^{c.d} 10.4 ^c 0.4 (0.2-0.9) Secondary Formation Isoprene 6.2 (2-6.2) ^{c.f} 4.8 ^g 0.3 (0.1-0.3) Terpenes 10.2 (10.2-19.1) ^{c.h} 6.3 ^g 0.6 (0.6-1.2) Other biogenic VOCs 15 (5-25) ^h 5.0 ^g 0.8 (0.3-1.3) Urban VOCs 8.0 (4.0-12) 25.9 ⁱ 2.1 (1.0-3.1) Total 94 (49-185) 6.0 (4.7-17) ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^d Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^c Clacey et al. [2004]. ^g Guenther et al. [1995]. ^h Kanakidou et al. [2005]. ^h KADARA et al. 2 [2005]. ^h Kanakidou et al. [2005]. ^h Kanakidou et al. [2005].	Description	Duin and Source, 1g a	70	1g a		
Biofiel use 10.4 $(5.0-21)^{c.d}$ 4.3° 0.4 $(0.2-0.9)$ Fossil fuel use 3.8 $(1.9-11)^{c.d}$ 10.4° 0.4 $(0.2-0.9)$ Secondary Formation Isoprene 6.2 $(2-6.2)^{c.f}$ 4.8° 0.3 $(0.1-0.3)$ Terpenes 10.2 $(10.2-19.1)^{c.h}$ 6.3° 0.6 $(0.6-1.2)$ Other biogenic VOCs 15 $(5-25)^h$ 5.0° 0.8 $(0.3-1.3)$ Urban VOCs 8.0 $(4.0-12)$ 25.9° 2.1 $(1.0-3.1)$ Total 94 $(49-185)$ 6.0 $(4.7-17)$ ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^c Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^c Clarge st al. [2004]. ^g Guenther et al. [195]. ^h Kanakidou et al. [2005]. ^b EGGAB 2.3 2 (Divier et al. 2005]. ^b EGAB 2.3 2 (Divier et al. 2005].	Onen biomass burning ^b	40 $(21-91)^{c,d}$	3 4 ^c	1.3(0.7-3.1)		
Fossil fuel use 3.8 $(1.9-11)^{cd}$ 10.4 ^c 0.4 $(0.2-1.2)$ Secondary Formation Isoprene 6.2 $(2-6.2)^{c.f}$ 4.8 ^g 0.3 $(0.1-0.3)$ Terpenes 10.2 $(10.2-19.1)^{c.h}$ 6.3^{g} 0.6 $(0.6-1.2)$ Other biogenic VOCs 15 $(5-25)^{h}$ 5.0^{g} 0.8 $(0.3-1.3)$ Urban VOCs 8.0 $(4.0-12)$ 25 .9 ⁱ 2.1 $(1.0-3.1)$ Total 94 $(49-185)$ 6.0 $(4.7-17)$ ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^c Bond et al. [2004]. ^c Guenther et al. [2006]. ^c Lays et al. [2004]. ^c Guenther et al. [1995]. ^b Kanakidou et al. [2005]. ^b Kanakidou et al. [2005].	Biofuel use	10.4 $(5.0-21)^{c,d}$	4.3°	0.4 (0.2 - 0.9)		
Secondary Formation Isoprene 6.2 $(2-6.2)^{e,f}$ 4.8 ^e 0.3 $(0.1-0.3)$ Terpenes 10.2 $(10.2-19.1)^{e,h}$ 6.3^e 0.6 $(0.6-1.2)$ Other biogenic VOCs 8.0 $(4.0-12)$ 25.9 ⁱ 2.1 $(1.0-3.1)$ Urban VOCs 8.0 $(4.0-12)$ 25.9 ⁱ 2.1 $(1.0-3.1)$ Total 94 $(49-185)$ 6.0 $(4.7-17)$ ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^d Henze and Seinfeld [2006]. ^e Henze and Seinfeld [2006]. ^e Claeys et al. [2004]. ^g Guenther et al. [1995]. ^h Kanakidou et al. [2005]. ^b EGOR B.2.2 (Divier et al. 2005]. ^b EGOR B.2.2 (Divier et al. 2005].	Fossil fuel use	3.8 (1.9–11) ^{c,d}	10.4 ^c	0.4 (0.2-1.2)		
Isoprene 6.2 $(2-6.2)^{e.f}$ 4.8 ^e 0.3 $(0.1-0.3)$ Terpenes 10.2 $(10.2-19.1)^{e.h}$ 6.3 ^e 0.6 $(0.6-1.2)$ Other biogenic VOCs 15 $(5-25)^h$ 5.0^e 0.8 $(0.3-1.3)$ Urban VOCs 8.0 $(4.0-12)$ 25.9^i 2.1 $(1.0-3.1)$ Total 94 $(49-185)$ 6.0 $(4.7-17)$ ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^d Henze and Seinfeld [2006]. ^e Henze and Seinfeld [2006]. ^e Clares et al. [2004]. ^g Guenther et al. [1995]. ^h Kanakidou et al. [2005]. ^b EGGAB 2.3 2 (Divier, et al. 2005]. ^a EGBAB 2.3 (Divier et al. 2005].		Secondary Formation				
Terpenes 10.2 $(10.2 - 19.1)^{ch}$ 6.3^g 0.6 $(0.6 - 1.2)$ Other biogenic VOCs 15 $(5-25)^h$ 5.0^g 0.8 $(0.3 - 1.3)$ Urban VOCs 8.0 $(4.0 - 12)$ 25.9^i 2.1 $(1.0 - 3.1)$ Total 94 $(49 - 185)$ 6.0 $(4.7 - 17)$ ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^d Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^c Iclaeys et al. [2004]. ^g Guenther et al. [1995]. ^h Kanakidou et al. [2005].	Isoprene	6.2 (2-6.2) ^{e,f}	4.8 ^g	0.3 (0.1-0.3)		
Other biogenic VOCs 15 $(5-25)^h$ 5.0^g $0.8 (0.3-1.3)$ Urban VOCs $8.0 (4.0-12)$ 25.9^i $2.1 (1.0-3.1)$ Total $94 (49-185)$ $6.0 (4.7-17)$ ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^d Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^c Guenther et al. [2004]. ^g Guenther et al. [2004]. ^b Kanakidou et al. [2005]. ^b Kanakidou et al. [2005].	Terpenes	10.2 (10.2-19.1) ^{e,h}	6.3 ⁸	0.6 (0.6-1.2)		
Urban VOCs 8.0 ($4,0-12$) 25.9 ⁴ 2.1 ($1.0-3.1$) Total 94 ($49-185$) 6.0 ($4.7-17$) ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^b Bond et al. [2004]. 4Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^c Iclaeys et al. [2004]. ^g Guenther et al. [1995]. ^b Kanakidou et al. [2005]. ^b EOGAB. 3.2 (Divisor et al. 2005]. 2005].	Other biogenic VOCs	15 (5-25) ^h	5.0 ^g	0.8 (0.3-1.3)		
Total 94 (49-185) 6.0 (4.7-17) ^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^d Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^l Claeys et al. [2004]. ^g Guenther et al. [1995]. ^h Kanakidou et al. [2005]. ⁱ EDGAB 2.3 2 (Divier et al. 2005].	Urban VOCs	8.0 (4.0-12)	25.9 ⁱ	2.1 (1.0-3.1)		
^a Best estimates are bold; uncertainty ranges in parentheses. ^b Includes savanna and forest fires, and agricultural burning. ^c Bond et al. [2004]. ^d Henze and Seinfeld [2006]. ^c Henze and Seinfeld [2006]. ^f Claeys et al. [2004]. ^g Guenther et al. [1995]. ^b Kanakidou et al. [2005].	Total	94 (49-185)		6.0 (4.7-17)		
	^B GSt estimates are bo ^b Includes savanna and ^c Bond et al. [2004]. ^d Henze and Seinfeld [2 ^c Henze and Seinfeld [2 ^c Claeys et al. [2004]. ^g Guenther et al. [1995 ^h Kanakidou et al. [200].	 (a) uncertainty ranges in p forest fires, and agricultu (2006). (2006). (3). (4). (4).<!--</td--><td>ral burni</td><td>es. ng.</td><td></td>	ral burni	es. ng.		
		Source: De Go	nuw et al	2009	8	

