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What is EMEP?

Cooperative Programme for Monitoring and Evaluation of
the Long-Range Transmission of Air Pollutants in Europe

(European Monitoring and Evaluation Programme)
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What is EMEP?

Cooperative Programme for Monitoring and Evaluation of
the Long-Range Transmission of Air Pollutants in Europe

(European Monitoring and Evaluation Programme)

Aims: To provide sound scientific support for the
Convention, in particular in the areas of:

Atmospheric monitoring and modelling

Emission inventories and emissions projections

Integrated assessment

– p.3/78



EMEP . . .

CLRTAP: Convention on Long Range Transboundary Air
Pollution

Adopted 1979

51 Parties

Eight Protocols

EMEP, 1984

Last one: Göteborg,
1999

Contribution to EU NEC Directives + CAFE
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Air Pollution Modelling
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Purpose of Modelling

1. Policy - emission
control

2. Scientific
research

3. Both!

Example: d(Dep(N))/d(ENOx),
Austria
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Complete approach

Detailed understanding might require:

size distributions

complex chemical pro-
cesses
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Policy/Global Models

Typically require:

simpler - only masses (PM2.5, PM10)

Well evaluated (trustworthy) models

Concentrate on main processes:
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Box model

The simplest model:

em

Emissions

< >

><

dC

dt
=

E

h
− u.(C − C0)
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Box model

Adding Chemistry:

em

Emissions

CHEMISTRY

< >

><

dC

dt
=

E

h
− u.(C − C0) + P − L.C
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Box model, cont.

... and more terms

-Vg. C : dry deposition

-L . C : wet deposition

entrainment

. . .

Allow the box to move?

⇒ Lagrangian
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The Eulerian 3D model

Represents all main
physical and chemical
processes

Numerical integration

Scientifically most sound method of calculating air pollution
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Eulerian model, cont.

3D models are CPU-expensive:

170 × 130 × 20 = 440 000 gridcells
×100 species
⇒ 44 million concentrations

Typically requires supercomputer for long simulations.
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Eulerian model, cont.

3D models are CPU-expensive:

170 × 130 × 20 = 440 000 gridcells
×100 species
⇒ 44 million concentrations

Typically requires supercomputer for long simulations.

(But, the times they are a changing.....)
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Aerosol Extras

⇒ Many other ‘effective’ species
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Aerosol Extras

⇒ Many other ‘effective’ species

Nucleation
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Aerosol Extras

⇒ Many other ‘effective’ species

Nucleation

Coagulation
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Aerosol Extras

⇒ Many other ‘effective’ species

Nucleation

Coagulation
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Aerosol Extras

⇒ Many other ‘effective’ species

Nucleation

Coagulation

Condensation

Cloud-processes
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Aerosol Extras

⇒ Many other ‘effective’ species

Nucleation

Coagulation

Condensation

Cloud-processes

Size-resolved emissions
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Aside: Is complexity good?

A
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u
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Complexity
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Aerosol modelling

Two main approaches:

1. Modal models

2. Sectional models
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Modal models

Make use of log-normal distribution

n(ln Dp) =
N

√
2π ln σg

exp

[

−
1

2

(ln D − ln Dpg
)2

ln2 σg

]
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Modal models, cont.

Break-down atmospheric
distribution in 2-3 modes
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Modal models, cont.

The kth moment is defined as:

Mk =

∫

+∞

−∞

Dk
pn(ln Dp)d(ln Dp)

with solution

Mk = N.Dk
pg

exp

[

k2

2
ln2 σg

]

M0 = total particle number concentration

M2 ∝ surface area

M3 ∝ volume, mass
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Modal models, cont.

Advantages

Requires very few parameters (σ, Dpg
)

Computationally inexpensive

Dis-Advantages

Has no explicit size-distribution, therefore conditions
assumed uniform within a mode
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Sectional models

Divide aerosol distribution into ‘bins’ or ‘sections’.
Typically 4-100, e.g.
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Sectional models, cont.

Advantages

State-of-the-art description (with many sections)

Allows different chemical mixtures at different sizes

Flexible

Dis-Advantages

Computationally expensive

Physics/chemical basis not always known
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Belief in models?

The basic rule:
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Belief in models?

The basic rule:

Garbage in ⇒ ⇒ Garbage out:
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Belief in models?

The basic rule:

Garbage in ⇒ ⇒ Garbage out:

SOA twist:
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Belief in models?

The basic rule:

Garbage in ⇒ ⇒ Garbage out:

SOA twist:

Garbage in the middle!
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Sources of OC
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Organic Aerosol

OA: Subject=Horrendous!! 1000s of compounds, mainly
unknown. Formation mechanisms complex and unkown!
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Partitioning

Gas-Particle
partitioning:

Ai

Gi

=
COA

C∗

i

where

C∗

i is saturation
concentration,
= f (Vapour
pressure)
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G/P cont.

A multitude of eqns found, e.g.

Ai

Gi

= Ki.COA =
RT

MWζip
0
L,i

.COA

Ai

Gi

=
COA

C∗

i

=
RT

MWiζ
′

ip
0
L,i

.COA

Smog-chambers:

Y = COA

∑ αiKi

1 + αiKiCOA
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Chemistry < − > SOA?

Stolen from Neil...
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SOA: α-K approaches

Smog-chamber data could be explained with:

VOC + Ox ⇒ α1 P1 + α2 P2
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G/P approaches

COA(µg/m3) ⇒

Pi = Ai + Gi

Ai

Gi

= Ki.COA

Ai

Gi

=
COA

C∗

i
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α-K approaches, cont.

Pros:

Easy-to-use

Available for many compounds
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α-K approaches, cont.

Pros:

Easy-to-use

Available for many compounds

Cons:

Derived from smog-chambers, often 40◦C, 100s ppb,
v.low RH

Not flexible/mechanistic
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α-K approaches, cont.

Pros:

Easy-to-use

Available for many compounds

Cons:

Derived from smog-chambers, often 40◦C, 100s ppb,
v.low RH

Not flexible/mechanistic

Coefficients used so far, wrong?
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New Evaluations

m-xylene

(Griffin, 1999)

a-pinene

(Griffin, 1999)

Isoprene

(Pre-2005)
m-xylene

(Ng, 2007)
(high-NOx)

a-pinene

 (Chan2007/,
Ng2006)

Isoprene

(Henze,2006)
m-xylene

(Ng, 2007)

(low-NOx)

Isoprene

(Chan, 2007)
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Volatilty Approach

Donahue, Robinson....

The Volatility Basis Set
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Volatility methods?

Pros:

Flexible framework

Maps more of parameter space

Easier to link new data/experiments

Efficient for global models

Cons:

Still not mechanistic
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EMEP approach

EMEP Kam-2 Method: ‘Explicit’, extended from Kamens et al.:

21 reactions, 15 products, dimer, .... Andersson-Sköld and
Simpson, JGR, 2001
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EMEP BSOA, Kam-2

Evaluated against smog-chamber:
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BSOA; Kam-2 Method

Comparison with Smog-Chambers good
(Andersson-Sköld and Simpson, 2001):
9-820 ppb α-pinene, 0-240 ppb NOx
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EMEP Kam-2(X)

Pros:

Flexible framework

‘Real’ species (surrogates anyway)

Linked with gas-phase chemistry

Evaluated against several smog-chamber exps.

Cons:

No aqueous/heterogenous chemistry

One (α-pinene!) species

Old
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The Big Stuff

MCM, 1000s reactions, 200 SVOC species (Jenkin et al.,
JGR, 2004)

(or CACM, Griffin et al.) – p.39/78



MCM-type

Pros:

Explicit framework

‘Real’ species

1000s of reactions - as realistic as possible

Cons:

No aqueous/heterogenous chemistry

Two (α, β-pinene) species

Needs very large (100-500) correction factors for
volatility
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MCM-type, cont.

Cons:

Heavy!
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MCM-type, cont.

Cons:

Heavy!
Pro:

Attempt to incorporate best-
understanding
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New issues....

HULIS

H2SO4

isoprene

carbonyls

OH, H2O2

Lignin pyrolysis products
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heterogeneous

direct emission multiphase

Working hypotheses for HULIS formation

Still changing - e.g. Warneck, Ervens, Jang, Griffin,
suggest aqueous/heterogenous pathways as source of
SOA. Isoprene, glyoxal, oxalic acid, ....

Do we know which pathway to follow?
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Sensitivity

All models sensitive to:

Vapour pressure

∆H assumptions

Activity coefficients

Deposition assumptions

Emissions

– p.43/78



Sensitivty: ∆H

Tsigaridis+Kanakidou, ACP, 2003
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Emissions – IIASA

Fine-particle emissions - Kupiainen, and Klimont, 2007
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Dry Deposition

Problems of Theory vs. Measurements:

From PhD Thesis, Rick Thomas

– p.46/78



Summary of Models

Many models

Little basis for choosing!

Little basis for evaluation!
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Summary of Models

Many models

Little basis for choosing!

Little basis for evaluation!

Unconstrained!
Need Observations!
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Results

Results: Annual Average OC, year 2002 (ugC/m3)

Kam2X
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BSOA contribution

BSOA/OC (%)

ASOA/OC (%)

Kam2X
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OC, take 2

OC with alternative vapour pressures

Kam-2X

Kam-2
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Sensitivity of OC: Birkenes
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Birkenes EC, TC
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Model performance - quite good at all Northern European
sites
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Aveiro SO−2−
4

, TC
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Model performance - quite bad for TC at all southern
European sites
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CARBOSOL Project

1-week filters (PM2), analysed for:

cellulose ⇒ biological parti-
cles

levo-
glucosan

⇒ biomass-
burning

OC/EC ⇒ primary emis-
sions

14C ⇒ modern/fossil

16 papers: Present and Retrospective State of Or-
ganic Aerosol Over Europe, J. Geophysical Research,
VOL. 112, D23, 2007
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Aveiro revisited...

Use levoglucosan to ‘correct’ WOOD
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Promising :-)
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cf CARBOSOL

K-Puszta (Hungary), Summer

Obs.-Derived EMEP Model

(5–95th %ile) (Kam2 - Kam2X)

TC 5.2 1.6 – 2.7

WOOD 0.3 – 0.5 0.05

EC 0.4 – 0.7 0.4

FFUEL 0.2 – 0.5 0.4

BSOA 2.9 – 3.6 0.2 - 1.4

ASOA 0.05 – 0.7 0.03 - 0.04

Units: µg C m−3

Simpson et al., JGR, 2007
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Use of tracers, cont.

SORGA: Norwegian project

Tove Svendby, Karl-Espen Yttri, ...

David Simpson, MET.NO

Hans Puxbaum + co. (TUV)

Kristina Stenström, Lund Univ.
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SORGA
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Source-Apportionment, cont

Other tracers:
14C ⇒ modern/fossil

cellulose ⇒ plant matter, ...

sugars/alcohols ⇒ fungi, ...

OC/EC ⇒ primary emissions

levoglucosan ⇒ biomass-burning

- all factors approximate.

- some ‘traps’, e.g. some modern 14C could be from
cooking oils, tyres, etc.

(e.g. Gelencsér et al., JGR, 2007)
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SORGA

Sources of PM1, Summer:

(K.E. Yttri et al., 2008, Prelim)
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SORGA

aKT-EMEP model, Hurdal:
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SORGA

Kam-2X-EMEP Model, Hurdal:
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The Target

Do we know how much OC we want?

Key words:
Artifacts (EC/OC, -ve, +ve, ...)
– can be of order 50% ?

Representativity - what does e.g.
[OC] mean?
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The Target

Do we know how much OC we want?

Key words:
Artifacts (EC/OC, -ve, +ve, ...)
– can be of order 50% ?

Representativity - what does e.g.
[OC] mean?
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Artifacts

EUSAAR result:

: Fig. from Jean-Philippe Putaud
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Other studies

Volkamer et al., GRL, 2006
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Other studies

Volkamer et al., GRL, 2006
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Conclusions

State of OC science ‘in infancy’ (Donahue et al., 2005)
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Conclusions

State of OC science ‘in infancy’ (Donahue et al., 2005)

. . . because as we know, there are known knowns;
there are things we know we know. We also know
there are known unknowns; that is to say we know
there are some things we do not know. But there are
also unknown unknowns - the ones we don’t know we
don’t know.

- (Donald Rumsfeld, 2005)
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Conclusions

Modellers have no way to ‘solve’ SOA modelling until
chemists have understood the basics.

But, model’s can serve to test theories and emissions

Emissions? Primary OC/BC + precursor (terpenes!)
emissions need verification (near-source
measurements?)
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Conclusions 2

Measurements are required to develop and constrain
models and validate emissions

Needs chemical speciation, tracers, many locations

Long-term field data + campaigns+supersites ideal

AMS, C14, ......
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Wishes...

Would be good to specify:

Emissions (AVOC, BVOC, volatility)

Volatile E(PM)? Or Condensible E(VOC)?

Source of Atmos. Aerosol:

How much is modern/fossil

How much is biomass/BSOA

How much is through aqueous pathway

Acidity/S ?

Mixing polar/nonpolar/liquid/other??

Which smog-chamber data are relevent?

Link smog/flow-chambers – atmosphere
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Garbage Avoidance

Strategies:

Check basics - does the model work for anything?

Check other pollutants - SO2, SO4, NOx, NOy,

Check emissions!

Check PCM tracers - EC, levoglucosan, C14

Check measurements - what do they mean?!

Be humble.....
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The End...
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Other studies

The simplest result – all PM from forests:

See: Tunved et al., Science, 2006
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Other studies

The simplest result – all PM from forests:

See: Tunved et al., Science, 2006

NB: Applies to clean air, selected air masses

– p.73/78



Evaluation

Mainly by comparison with:

More Complex models (e.g. for chemical schemes)

Measurements - the main test!!
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Ozone
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Model vs. Model

EMEP vs IVL (HCHO):

Andersson-Sköld & Simpson, Atmos.Env., 1999
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HCHO Cont. Field Comp:

Donon, France:
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Isoprene

(Nice result for precursor too:)

Lessons?

Combination - lab (via. MCM) + field data very
powerful – tests kinetics, emissions and chemistry

(New comparisons in progress, Tack SCARP, Tellus,
FZJ!)
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