Meteorological variability and climate trends affecting air pollution in Europe - results from dispersion model scenarios

> Camilla Andersson Stockholm University ITM

Main reasons for using and developing regional scale dispersion models

- Air quality monitoring
- Prognostic modelling of air pollutants
- Scenario calculations (policy, science)
- Measure on general understanding, but...

...

Method

- Three-dimensional Eulerian chemistry and transport model called MATCH
- Domain covers whole Europe with a resolution of ~50 km
- Chemistry: 60+ species
- Wet & dry deposition

The need for super computers

- Between cubes: transport ca. 6x6x70=2500 flops/h&cube
- Within cube
 - □ Chemical ca. 150x3=450 flops/h&cube
 - Emission/Deposition ca. 10+40 flops/h&cube
- Number of cubes 100x100x20 = 200 000.
- In total 200000x(450+50+2500)=600 M flops/h
- This is a great underestimation!

Method (cont'd)

Input is needed emissions, physiography, meteorology (dynamic models).

Meteorology

• T, U, V, Q, CC, CWC, etc.

NOx SNAPtot 2000

Emissions

- NOx, SOx, CO, NMVOC, NH3, PPM
- Isoprene, seasalt on-line

Land use, e.g. forest, vegetation

Motivation

- Classical pollutants
 - Ozone
 - Particulate components
 - Acidification
 - Eutrophication

Overview

- CTM forced by ECMWF-reanalysis (ERA40): variability and past trend due to meteorology in Europe
- 2) CTM forced by regional climate model data (RCA3): future trend due to climate change in Europe

Past and present study (I): Aim

- 1) Can we identify any trend in air pollutants due to a trend in meteorology?
- 2) What is a typical annual air pollution situation, taking meteorological variability into account?

Motivation

- 1) Discrepancies between emission changes and concentration changes
- 2) Year 2003 had exceptionally high ozone concentrations

Past and present study (I):

Set-up

- ERA40: ECMWF reanalysis years 1958-2001
 - Horisontal: 125 km -> 40 km Vertical: 5 km 21 layers (eta) Temporal: 6-hourly temporal resolution interpolated to 1-hour
 - Europe only
 - EMEP expert emissions
 - year 2000
 - constant boundaries
 - => variation in meteorology
 - & natural emissions only

- No change (either in RCA3 or MATCH) in lower boundary: e.g.
 - S albedo (except snowcover)
 - 🖗 surface roughness
 - Vegetation type

Past and present study (I): Change in concentration per decade

Andersson and Langner, 2007, Tellus B

Climate change study (II): Aim Motivation

Can we identify any trend in air pollutants due to climate change? Fear of climate trends affecting the air pollution in the future negatively

Climate change study (II):

Set-up

RCA3

5

140-year

transient regional climate-change downscaling 50 km

Boundaries from global climate model (ECHAM) Emission scenario A2 (and B2, not shown)

- 3 time windows (reference, scenario1, scenario2)
- EMEP expert emissions of year 2000
- & constant boundaries
- => variation in meteorology
- & natural emissions only
- No change (either in RCA3 or MATCH) in lower boundary (i.e. albedo, surface roughness, vegetation type, ...)
 - Off-line CTM-climate model: can not take into accound indirect effect of aerosol or GHG trends in the CTM

Climate change study (II): Current and future near-surface O₃

Summer-time (amjjas) daily-mean, near-surface, ozone concentration during present climate.

Change in daily-mean concentration due to changes in climate.

Climate change study (II):

Frequency distribution of daily-maximum near-surface O3

Conclusions (take home messages)

- Climatic trends and meteorological variability affects air pollution concentrations and deposition over Europe, based on modelling studies, on long time scales (year-to-year and longer). Therefore it is important with long-term measurements for monitoring changes as well as for model evaluation.
- For modeling applications it would be useful with a better understanding of chemical content of organic aerosol and the emissions leading to them. Clusetering of compounds of similar behaviour is necessary to take them into account in dispersion models.

Thank you...

- Collegues and co-workers, especially:
 - Robert Bergströms
 - Magnuz Engardt
 - Joakim Langner
- Supervisors
 - HC Hansson
 - Christer Johansson
 - David Simpson

• Y'all 4 listening!