School of Earth and Environment

Analysis of Soot Produced on Combustion of Biomass

Jacqueline Wilson School of Earth and Environment University of Leeds

Supervisors: Dr. M T Baeza Romero Dr. J B McQuaid

Dr. B Brooks

An introduction to my research

Objectives

- Determine composition of particles generated in the combustion of conventional fuels and biomass
- Determine composition of particles generated through oxidation of combustion products by ozone

Why investigate biomass soot?

- Biomass smoke and associated black carbon has huge implications for atmospheric chemistry
- Climate effects

IPCC report 2007

- Conventional soot mechanisms do not fully describe soot formation from biomass.
- The role of oxygenates appears to be important according to previous offline analysis.
- A new mechanism involving intermediates such as eugenol has been proposed and is to be investigated using an on-line technique - the ATOFMS (Aerosol Time of Flight Mass Spectrometer) (TSI inc).

Collaboration with a group from the Energy and Resources Research

Institute (ERRI), University of Leeds.

Emma Fitzpatrick Jenny Jones Alan Williams

Previous work carried out by them has looked at:

- Pyrolysis GC-MS of pine wood and eugenol
- Surface analysis via Scanning Electron Microscopy (SEM) and X-ray Photoelectron Microscopy (XPS)

OFF-LINE TECHNIQUES

Mechanism from ERRI

Fitzpatrick, E.M., et al. 2007 IChemE

Why analyse on-line?

On-line vs. Offline analysis:

- Advantages of off-line analysis
 - Preparation of samples can give reproducible quantitative analysis
 - Electron microscopy techniques give information on particle morphology
- Limitations of off-line analysis
 - Volatile compounds can be lost
 - Chemical transformations due to time lapse between collection and analysis
- Advantages of on-line analysis
 - Minimal chemical modification of particles
 - High temporal resolution
 - Analysis of single particles
- Disadvantages of on-line analysis
 - Are there any ??

The experimental set-up

ATOFMS

How does the ATOFMS work?

3 regions

- Sampling region
 - Particles introduced at atmospheric pressure then accelerated to terminal velocity
- Sizing region
 - Particle velocity measured by 2 continuous wave laser beams (532 nm)
 - Velocities compared with a calibration curve

- Mass spectrometry region
 - UV laser (266 nm) fired to hit particle at centre of ion source
 - Particle compounds desorbed and ionised
 - Bipolar time-of flight mass spectrometer analyses both positive and negative ions

Taken from Series 3800 Aerosol Time-of-Flight Mass Spectrometers (ATOFMS) with Aerodynamic Focusing Lens Operation and Service Manual *P/N 1930036, Revision C May 2007*

MS-Analyze – What comes out

What can we do with this? (1)

â

UNIVERSITY OF LEEDS

What do we do with this? (2)

What do we do with this? (3)

Â

UNIVERSITY OF LEEDS

Average spectra only tell us about bulk properties. What about individual particles?

- Current problem with size analysis too many eugenol particles
- CLUSTERING
 - Cannot analyse hundreds or thousands of spectra individually
 - Cannot categorise hundreds or thousands of spectra by eye
 - Need a computer programme to do it for us

Clustering programmes

Two analytical tools available:

- YAADA
 - http://www.yaada.org/
 - Developed by Jonathan Allen, Arizona State University
 - Runs in MatLab
 - Clusters using ART-2a algorithm
- Enchilada (Environmental Chemistry through Intelligent Atmospheric Data Analysis)
 - http://www.cs.carleton.edu/enchilada/
 - Open source, written in Java
 - Three clustering algorithms available
 - ART-2a
 - K-means
 - K-medians

Clustering with Enchilada

Clustering data using K-means needs:

• A user defined number of clusters

Method of finding number of clusters:

- Try clustering with different numbers of clusters
- Plot 'average distance of all points from their centers on final assignment' against number of clusters

Need to decide where the 'elbow region' is – when increasing the number of clusters no longer significantly improves the analysis Decided on 10 clusters here

Cluster analysis

Cluster 2 – low power Cluster 7 – medium power Cluster 8 – medium to high power Cluster 10 – high power

Cluster 2 – low powers

Cluster 3 – n-Decane

Cluster 7 – medium power (mainly eugenol)

UNIVERSITY OF LEEDS

â

Cluster 10 – high power

Summary

Experimental observations:

• More particles produced on combustion of eugenol

Data analysis:

- At high powers eugenol contains C_n^+ and C_n^-
- At high powers n-decane contains $C_3H_3^+$ and $C_2H_2^-$, the building blocks of aromatic rings
- At low powers eugenol appears to contain $C_3H_3^+$ while decane contains C_n^+
- At low powers n-decane still contains $C_2H_2^-$ but eugenol appears to contain C_nH^- and $C_nH_2^-$ (not $C_2H_2^-$)
- Low intensity peaks seen at much higher m/z values at low power but difficult to find peaks that stand out for analysis

Future improvements to experiments

- Analysis of "clean" air zero air generator vs. compressor and filters
- Better set-up of ATOFMS alignment and calibration (User improvement!)
 to improve sensitivity
- Use of other fuels in burners both biomass based and traditional fuels
 - Octane/hexane
 - Furfural

- New inlet (30-300 nm)
- Reduce the number of particles to get better information on the relationship between particle size and composition
- Repetition and further analysis statistics!

 Once experiments to analyse particles produced on combustion of biomass and traditional fuels are completed satisfactorily I intend to move on to analysing the result when combustion products are oxidised by ozone

- This will utilise the environmental chamber at the University of Leeds
 - Temperature controllable from -60 to +40 ℃
 - Intend to set up a smog chamber inside using a Teflon reactor within which combustion particles can be resuspended
 - UV lamps to initiate reaction by forming O_3

- 1. Organic aerosols produced on combustion of fuels depend on many conditions e.g. temperature, fuel levels, air/fuel ratios
- 2. Differences in composition between fossil fuel and biomass combustion particles could mean important differences in their properties and effect on health
- 3. Analysis of ATOFMS data can release important information at the single particle level but is not necessarily easy to get out

THANK YOU

AND

ANY QUESTIONS?

